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Stiffening of fluid membranes and entropy loss of membrane
closure: Two effects of thermal undulations
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Abstract. The problem of membrane softening by thermal undulations is revisited. In contrast to general
belief, fluid membranes are predicted to be stiffened, not softened, by their undulations. Equal values of
the effective bending rigidity are calculated from the interplay of local mean curvature modes (hats) on the
basically flat membrane and from the coupling of spherical harmonic modes with spherical curvature. In
addition, a conjecture is made on the entropy of membrane closure. It relies on a similarity of membrane
closure to periodic boundary conditions.

PACS. 68.10.Et Interface elasticity, viscosity and viscoelasticity – 82.65.Dp Thermodynamics of surfaces
and interfaces

1 Introduction

Fluid membranes undergo microscopically visible thermal
undulations. If the undulations are strong enough, they
are expected to destroy long-range orientational correla-
tion within a membrane [1] and the equilibrium shapes
of large membrane vesicles [2]. A simple parameter de-
scribing the strength of undulations is the relative excess
area ∆A/A, where A is the area of an averaged surface,
and ∆A is the area stored by the undulations in excess of
A. To lowest order, which is quadratic in the undulation
mode amplitudes, the relative excess area was calculated
to be [2–6]

∆A

A
=

kT

4πκ
ln
L

a
=

kT

8πκ
lnM. (1)

In the two equivalent formulas k is Boltzmann’s constant,
T temperature and κ the “bare” bending rigidity of the
membrane. A noteworthy feature of (1) is the logarithmic
dependence of ∆A/A on the size of the membrane. The
membrane area enters either through the number M of
fluctuation modes, typically the number of molecules (in
a bilayer pairs of opposite molecules), or through the ra-
tio of the lengths L and a characterizing, respectively, the
size of a (quadratic) piece of membrane and the molecu-
lar diameter. Fluctuations are likely to become “destruc-
tive” when ∆A/A as given by (1) approaches unity and
has ceased to be a good approximation. Solving (1) for L
and putting ∆A/A = 1/2, one finds L to be equal to the
persistence length of membrane orientation introduced by
de Gennes [1].
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If a polymer is longer than its persistence length it
can be strongly bent by thermal energies, thus losing its
stiffness on this scale. Accordingly, it seems natural to
anticipate that a membrane is floppy when its size ex-
ceeds the orientational persistence length. Some theoret-
ical work about bicontinuous microemulsions is based on
this idea [1,7,8]. In addition, attempts have been made to
deal with the transition from the stiff state to the floppy
state by introducing an effective bending rigidity κeff that
depends on the size of a bent piece of undulating mem-
brane [5,9–13]. All authors agree on the form

κeff = κ(1− α
∆A

A
), (2)

with ∆A/A given by (1), to describe the softening as a
function of membrane size. However, there is disagreement
on the value of the numerical factor α. Most authors ob-
tained α = 3, while we predicted α = 1. The higher value
is a consequence of using the normal displacement of the
fluctuations as statistical measure. We argued that (mean)
curvature is the correct measure of integration, but made
serious mistakes in our calculations.

All previously proposed theories of the effective bend-
ing rigidity employed global modes to describe the mem-
brane fluctuations, such as sine waves for the flat base or
spherical harmonics for the spherical base. In the mean-
time, local mean curvature modes, called hats, have been
found useful in dealing with the bending rigidity of mixed
membranes [14,15]. A precise formulation of the hat model
exists as yet only for the flat base surface. In this case
the hat modes have been shown to reproduce all the fea-
tures of the usual linear theory of thermal undulations in
terms of sinusoidal modes [14,15]. In the simplest version
of the hat model, each molecule in a monolayer (or pair
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of opposite molecules in a bilayer) forms the center of a hat
with uniform mean curvature. The center is surrounded
by a brim of pure saddle curvature which is part of a
catenoidal minimal surface.

Armed with an additional model and having noted our
earlier mistakes, we decided to examine once more the ef-
fects of bending fluctuations on the large-scale bending
properties of fluid membranes. Therefore, we consider how
hat modes affect each other in the basically flat membrane
and how spherical harmonic modes couple with spherical
curvature. The question of the right statistical measure
does not come up explicitly in the first calculation and will
only be treated before we start the second. Most surpris-
ingly, we find in both calculations a stiffening instead of a
softening of the membrane. Formula (2) remains valid, but
with a negative numerical factor, α = −1. The new result
is not in conflict with the concept of a persistence length
of membrane orientation. However, it suggests that the
loss of orientational correlation at large enough distances
is brought about not by a transition to a floppy state, but
by a progressive crinkling of the membrane.

In the present study, we also propose an entropy loss
∆S of membrane closure (or vesicle formation). To de-
rive it, we start from the hat model with doubly periodic
boundary conditions and exploit a similarity of spherical
membrane closure to periodicity. It may come as another
surprise that the value of the entropy of closure,

∆S = −2k lnM, (3)

as conjectured for spheres is very similar to the entropy
loss of a polymer chain being closed to form a loop. For a
diffusion path the entropy of closure is known to be

∆S = −
d

2
k lnN

where N is the number of steps on a simple rectangular
lattice and d is dimensionality. The same formula holds for
self-avoiding random walks in two and three dimensions,
with slightly different numerical prefactors [16]. (All these
formulas are good only for large enough M or N and omit
additive constants.) We mention that Fisher raised the
question of an entropy loss of membrane closure already
ten years ago [17]. Very recently, Kegel et al. [18] have
extracted from a 30-year-old article of his [19] a possible
answer. It is of type (3) but with an unknown numerical
factor. We will briefly return to these matters at the end
of the article.

2 Membrane stiffening by thermal
undulations

In order to calculate the stiffening of fluid membranes by
bending fluctuations, we first study the flat membrane in
terms of the hat model. Subsequently, we consider the
freely fluctuating sphere, using the global undulation
modes expressed by spherical harmonics. The first cal-
culation is novel, while the second is based on previous

work and focuses on correcting a mistake. As is common in
dealing with thermal undulations, the validity of most of
the results is restricted to rather weakly fluctuating mem-
branes which will be called almost flat or almost spherical.

Both calculations are based on the bending energy g
per unit area of fluid membrane in the standard form

g =
1

2
κ(c1 + c2)2 − κcs(c1 + c2) + κ̄c1c2. (4)

Here c1 and c2 are the principal curvatures, κ is the bend-
ing rigidity, and κ̄ is the bending modulus of Gaussian cur-
vature K = c1c2. The spontaneous curvature cs is taken to
be zero and, specifically, bilayers are assumed to be sym-
metric, unless otherwise stated. We will frequently use the
sum of principal curvatures (or “splay” in liquid crystal
language) J = c1 + c2 and, correspondingly, Js = cs. J is
related to the mean curvature H through J = 2H. In the
following, the membrane is assumed to be unstretchable
and, in the case of vesicles, permeable to water.

2.1 The almost flat membrane and the hat model

The base surface of the almost flat membrane is taken to
coincide with the xy plane of a Cartesian xyz coordinate
system. An instantaneous shape of the fluctuating mem-
brane can then be described by z = u(x, y) , i.e. the height
of the membrane relative to the base plane as a function
of position. Each local bending fluctuation or hat is made
of a central part of uniform J , to be called cap, and a brim
of zero J . The membrane is thought to be completely di-
vided into caps which, for simplicity, are approximated by
(slightly bent) circular disks. If only a single such hat is
“excited” in an infinite membrane, it will consist of a cap
with pure spherical curvature and a brim with pure sad-
dle curvature which is part of a catenoid. The continuous
slope ψ(ρ) of the axisymmetric hat depends on the dis-
tance ρ in the xy plane from the hat’s center, having its
extremum ψ0 = ψ(ρ0) at the boundary ρ = ρ0 of the cap.
For generally small slopes, i.e. for ψ2

0 � 1, the brim drops
or rises logarithmically with ρ, depending on whether the
hat points upwards or downwards [14,15].

In the case of the almost flat membrane (|gradu| � 1
or ∆A/A � 1), the shape of the freely fluctuating mem-
brane is, in the usual linear approximation, the superpo-
sition of the displacements u of all the hats. The super-
position principle applies equally to the gradients and the
mean curvatures. Summing up the deformations leaves the
uniform mean curvature of each cap unchanged, but may
alter its positive Gaussian curvature because of the sad-
dle curvature residing in the brims of other hats. Standard
Fourier transformations lead from the hat modes to sinu-
soidal curvature modes and, with good accuracy, back to
the hat modes. Each sinusoidal curvature mode is at the
same time a displacement mode where J = q2u, q being
the wave number of the mode. This relationship enables us
to go from hats to displacements and vice versa in the lin-
ear approximation. The diameter of the cap, 2ρ0, is equiv-
alent to the length a in the upper wave vector cutoff π/a
and may be identified with a molecular diameter.
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For a membrane of zero spontaneous curvature the
equipartition theorem of the hat model has the general
form

1

2
κ〈J2〉A0 =

1

2
kT (5)

where A0 = πρ2
0 is the area of the slightly bent disk rep-

resenting the cap of a hat. J = c1 + c2 is related to the
cap radius ρ0(= a/2) and the cap boundary angle ψ0 by

J =
2ψ0

ρ0
· (6)

If the membrane is a monolayer or bilayer consisting of
a single species of amphiphilic molecules, equation (5) is
simply the equipartition theorem valid for a membrane
disk of fluctuating mean curvature. The Gaussian curva-
ture term in (3) can be omitted since the fluctuations do
not change the topology of the membrane. Inserting (6)
in (5) leads to

〈ψ2
0〉 =

kT

4πκ
· (7)

Taking kT = 4 × 10−21 J (room temperature) and
κ = 1 × 10−19 J (typical of lipid bilayers), one finds
〈ψ2

0〉
1/2 ≈ 3◦, in agreement with the assumption of an

almost flat membrane. The fact that 〈ψ2
0〉 is independent

of ρ0 reflects the well-known scale invariance of membrane
bending energies and permits some freedom in defining the
size of the spherical caps.

In many situations it makes no difference whether the
statistical mechanics of out-of-plane membrane fluctua-
tions is based on a Fourier mode model with displacement,
gradient angle, or mean curvature as statistical measure,
or on the hat model. The latter was introduced because it
can be generalized to allow a straightforward calculation
of the bending rigidity of mixed membranes made of very
different molecules [14,15]. For this purpose it is attractive
to rewrite (5) in the form

1

κ
= 〈J2〉

A0

kT
(8)

which emphasizes that the flexibility 1/κ is proportional to
the mean-square strength 〈J2〉 of the local bending fluctu-
ations. 〈J2〉 contains the weighted sum of the hat bending
fluctuations of the various molecules. In addition, it in-
cludes any local bending fluctuations resulting from the
diffusion of molecules (or pairs of molecules in a bilayer)
of different spontaneous curvature. (To keep things sim-
ple, we assume uniformity of both A0 and κ̄ in the present
work.)

We would like to stress that at least in equilibrium sta-
tistical mechanics the hat modes are in no way inferior to
the usual sinusoidal modes. Like the latter, they may be
regarded as a complete set of energetically decoupled fluc-
tuation modes in the linear approximation of the almost
flat membrane. The cutoff problems of the Fourier rep-
resentation translate into the problems of disk size and

shape when the hat modes are used. Periodic boundary
conditions for the hat model will be discussed below in
connection with the entropy of membrane closure. It is an
advantage of the hat modes, particularly useful in the case
of mixed membranes, that they relate the (macroscopic)
bending rigidity to the (microscopic) bending properties
of the molecules composing the membrane.

Before calculating by means of (8) the effective in-
crease of the bending rigidity due to thermal undulations
we write down the very direct derivation of the excess area
δA bound by a hat of cap boundary angle ψ0 [14]. With
ψ(ρ) = ψ0ρ0/ρ for ρ > ρ0, one has

δA =

ρmax∫
ρ0

1

2
ψ2

0

ρ2
0

ρ2
2πρdρ

= πρ2
0ψ

2
0 ln(ρmax/ρ0) (9)

if the contribution from the cap is neglected. Dividing δA
by A0 = πρ2

0, taking the statistical average (7) for ψ2
0, and

replacing ρmax and ρ0 by L and a, respectively, lead back
to (1) as expected. It is sufficient to consider a fixed po-
sition accommodating a single molecule since in a mem-
brane of freely diffusing and fluctuating hats, the local
bending fluctuations can be regarded as statistically inde-
pendent.

Let us now employ the hat model to calculate the effec-
tive bending rigidity of the weakly fluctuating membrane.
Because of the presence of other hats, the cap of each hat
will in general be (slightly) tilted by an angle τ from the
direction normal to the xy plane. Taking this effect into
account, we correct the linear hat model to lowest order.
The tilt of a cap reduces the strength of the associated
brim. To show this, we start from the relationship

J = div n =
∂nx

∂x
+
∂ny

∂y
(10)

where

n(x, y) =
(−∂u/∂x,−∂u/∂y, 1)

[1 + (∂u/∂x)2 + (∂u/∂y)2]1/2

is the director, a unit vector normal to the membrane.
Note that (10) is valid at any tilt τ of the membrane.
Next we make use of an electrostatic analogy, comparing
∂nx/∂x+∂ny/∂y with a charge density and (nx, ny) with
an electric field. In this strictly two-dimensional analogy,
the tilt of the cap does not affect the charge density, but
it does reduce the area which the cap projects on the xy
plane. Accordingly, the tilt of the cap lowers the total
charge of a cap on average by the factor

1−
1

2
〈τ2〉 = 1−

∆A

A
·

The mean strength of the associated brim decreases by
the same factor. It is proportional to the total charge of
the cap in the electrostatic analogy because it varies as
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the number of field lines (or “tilt lines”) emanating from
the cap. The (slight) deviation of the projection of the cap
from axisymmetry should be irrelevant at large distances.

The electrostatic analogy suggests that the effect of
tilt can be taken into account to lowest order by reducing
in (8) the area A0 of the molecules while keeping 〈J2〉
fixed. Replacing A0 by A0(1 − ∆A/A) in this equation,
one obtains the effective bending rigidity κeff from

1

κeff
= 〈J2〉

A0

kT
(1−

∆A

A
)·

Evidently, κeff is related to the “bare” bending rigidity κ
through

κeff = κ/(1−
∆A

A
)·

Because of ∆A/A� 1 and (1) this may be rewritten as

κeff = κ+
kT

4π
ln
L

a
(11)

for the almost flat membrane. According to this result, the
bending rigidity increases logarithmically with the scale
on which the membrane is bent.

2.2 The almost spherical membrane and spherical
harmonics

In the case of fluctuating spherical vesicles, to be treated
next, we will use the global fluctuation modes expressed
by spherical harmonics. (Hat modes on the sphere pose
the problem that they are not completely decoupled; see
below.) Since we will refer to our earlier calculation [5]
and only change the measure of integration, let us first
look into the problem of the measure.

The natural measure of the hat model and the sinu-
soidal curvature modes related to it by Fourier trans-
formations, is the mean curvature H or, as we prefer,
J = 2H = c1 + c2. The logarithmic divergence of the
height u in the brim of a hat rules out, in the case of an
infinite membrane, the use of normal displacement even
as a substitute for the true measure. Another argument
for the curvature measure is the fact that the strain of
the membrane is curvature and not displacement or tilt.
Also, curvature in terms of the angle made by subsequent
links is the accepted measure of integration in the sim-
ilar case of fluctuating polymer chains [20]. The appro-
priateness of mean curvature in the case of membranes
becomes particularly evident if one builds up the surface
from single molecules, adding them row by row along a
membrane edge. The positional freedom of a new molecule
is very much restricted by the position and orientation
of the membrane edge to which it is added. Essentially,
we can only choose the height of the molecule relative to
a membrane patch. If the patch consists of at least four
preexisting adjacent molecules, this height determines the
mean curvature of the membrane at the center of the com-
plemented patch.

We emphasize that these local measures are not in
conflict with the basic measure of classical statistical me-
chanics which is displacement (after integrating out mo-
mentum). It is the limitation to small relative displace-
ments, because of the cohesion of the material, that leads
to the redefinition of position as the angle difference be-
tween subsequent polymer links or the mean curvature of
a group of molecules.

To elucidate this point, let us briefly have recourse to
the basics of statistical mechanics. A well-known method
to visualize and count microstates in classical statisti-
cal mechanics is to represent the membrane molecules by
mass points, each attached to a lattice point of a three-
dimensional cubic lattice. The lattice parameter equals the
thermal de Broglie wavelength of the mass points. In this
simple picture, which disregards internal microstates of
the molecules, we can describe the fluctuating membrane
in a satisfactory manner if the distance between neigh-
boring molecules is at least several lattice parameters and
fluctuates over a length larger than one lattice parameter.
In such a model it is evident that the factor by which each
molecule increases the number of participating membrane
configurations equals the number of lattice points that are
thermally accessible to the molecule complementing the
patch. Accordingly, the total entropy of membrane bend-
ing fluctuations is the sum of the local entropies of mean
curvature. It is independent of the absolute displacement
u of the mass point from a base plane. (Of course, there is
also a molecular entropy of lateral distance fluctuations. It
can be separated from that of bending and is of no interest
in the present context.)

The bending fluctuations of a (practically) unstretch-
able membrane are associated with lateral flows. Lateral
motion does not need to be analyzed in equilibrium sta-
tistical mechanics and can often be neglected entirely as
it is quadratic in the mode amplitudes. However, a one-
to-one mapping of the deformed membrane states on a
reference surface and vice versa has to be possible, for
small and large deformations, to ensure the proper count-
ing of microstates in terms of molecular mean curvatures.
Fortunately, invertible mappings satisfying local area con-
servation and fully characterized by local mean curvatures
appear, in special cases, easy to devise. A basically flat in-
finite membrane with nonvanishing mean curvature only
in a finite region may serve as an example. Choosing the
strictly flat state as reference state, one can return the de-
formed membrane to it in a unique way by controlling the
lateral flow of membrane material. A satisfactory prescrip-
tion (in the absence of overhangs) would be purely radial
flow from a center, e.g. the origin of the xy coordinate
system. After the flattening of the membrane, we have
a pattern of original mean curvatures in the xy plane. To
make it visible, we could imagine each membrane molecule
to carry a little tag indicating its original mean curvature.
Inspection shows that any change of the deformed surface,
apart from a general change of height, leads to a different
pattern of tags. This strongly suggests that the mapping
of the deformed surface on the xy plane and vice versa is
unique in both directions.
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From a broader perspective, it seems attractive to in-
voke the fundamental theorem of surfaces which allows
three degrees of freedom in surface mapping. They are
needed in the present case to specify mean curvatures and
to guarantee local area conservation and invertibility, but
it is not generally clear how to incorporate the obviously
important boundary conditions.

We do not repeat here in detail our previous calcula-
tion of the bending energies of weakly fluctuating spherical
vesicles without volume constraint [5]. The same results
were obtained in similar forms by others [3,6] and also
once more by us [21], in connection with different prob-
lems.

Describing the surface of the slightly deformed sphere
by

r(θ, φ) = r′0 + u(θ, φ)

where r, θ, φ are the usual polar coordinates and r′0 is a
renormalized radius of the sphere (see below), one has the
director

n(θ, φ) =
(1,−∂u/r∂θ,−∂u/r sinθ ∂φ)

[1 + (∂u/r∂θ)2 + (∂u/r sinθ ∂φ)2]1/2

and the curvature

J = div n =
1

r2

∂

∂r
(r2nr) +

1

r sinθ

∂

∂θ
(sinθ nθ)

+
1

r sinθ

∂nφ

∂φ
·

It is advantageous to adopt the operators

∇2 =

(
∂

∂θ
,

1

sinθ

∂

∂φ

)
∆2 =

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂φ2
,

and to introduce the relative radial displacement of the
surface

f(θ, φ) = u(θ, φ)/r′0.

Keeping here and in the following only terms up to
quadratic order in f , one finds

div n =
2

r′0

[
1− f −

1

2
∆2f + f2 + f∆2f

]
(12)

after some algebra. The differentials of surface area and
solid angle dΩ = sinθ dφdθ are related through

dA = r
′2
0

[
1 + 2f + f2 +

1

2
(∇2f)2

]
dΩ.

The last two equations lead to the total bending energy

G =
1

2
κ

∮
(div n)2dA

= 2κ

∮ [
1−∆2f +

1

4
(∆2f)2 + f∆2f

+
1

2
(∇2f)2

]
dΩ (13)

where the Gaussian curvature term 4πκ̄ is omitted. The
linear term ∆2f will be dropped in the following as its in-
tegral over the sphere vanishes. Global fluctuation modes
are defined by expanding f in spherical harmonics

f(θ, φ) =
∞∑
l=2

+l∑
m=−l

almYlm(θ, φ).

The l = 0 and the three l = 1 modes are left out as they
represent uniform radial displacement and vesicle trans-
lation, respectively. The spherical harmonics are an or-
thonormal set of functions and fulfill the eigenvalue equa-
tion

∆2Ylm = −l(l+ 1)Ylm.

Any function f(θ, φ) satisfies∮
(∇2f)2dΩ = −

∮
f∆2fdΩ, (14)

a formula to be used below.
In the earlier paper [5] we claimed erroneously that on

a sphere it does not matter whether curvature or displace-
ment is taken as the measure of integration and for sim-
plicity chose displacement. The resulting partition func-
tion for the fluctuating sphere is the functional integral∮

Df exp [−G(f,∇2f,∆2f)/kT ]

where it makes no difference, apart from an irrelevant fac-
tor, whether we write Du or Df . With f as statistical
measure, it is attractive to cast (13) in the form

G = 2κ

∮ [
1 +

1

4
(∆2f)2 −

1

2
(∇2f)2

]
dΩ (15)

and regard the second term as the “regular” bending en-
ergy of the fluctuations. The third term of (15) lumps
together, by means of (14), the last two terms of (13).
It is regarded as a “correction” due to a coupling of the
fluctuation modes with spherical curvature. The particu-
lar definition of the “regular” bending energy may seem to
be justified by the close correspondence of ∆2u/(r

′
0)2 on a

sphere to ∂2u/∂x2 + ∂2u/∂y2 on a plane. The expansion∮
1

2
κ(∆2f)2dΩ =

1

2
κl2(l + 1)2

∑
l,m

|alm|
2

displays the “regular” bending energies of the fluctuation
modes.

Relying on the displacement measure, other authors
dealing with the effective bending rigidity of vesicle mem-
branes appear to have been guided by similar ideas. How-
ever, the fact that ∆2f is not the only linear term in J as
given by (12) may be taken as a warning that f is not the
right measure of integration.

Selecting curvature as the measure leads to a different
partition function,∮

DJ exp [−G(f,∇2f,∆2f)/kT ] .
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In our quadratic approximation, DJ may be replaced by
D(−∆2f − 2f)/r′0, the total contribution in (12) to
J = div n that is linear in f . It is now appropriate to
cast (13) in the form

G = 2κ

∮ [
1 + (

1

2
∆2f + f)2 − f2 +

1

2
(∇2f)2

]
dΩ (16)

and to consider the second term∮
1

2
κ(∆2f + 2f)2dΩ =

1

2
κ[l(l+ 1)− 2]2 |alm|

2

to be for the regular bending energy of the thermal un-
dulations, with [l(l+ 1)− 2]alm being the curvature mode
amplitude. The new mode energies are seen to differ from
their counterparts in (15). The last two terms of (16) are
the corrections due to the coupling of the fluctuation cur-
vatures with the spherical base.

To corroborate the assignments let us for a moment
subtract from J a spontaneous curvature Js = cs = 2/r′0
just canceling the first term in (12). In this particular case,
only the second term of (16) survives as is to be expected
in the absence of coupling. Also, if the global fluctuation
modes are approximated by vectors in a molecular curva-
ture space (J space) of dimensionality M , it becomes ap-
parent that contributions to the curvature J of the mode
lm that are quadratic in alm disappear in our quadratic
approximation when the curvature vector is squared. (In
order to see this, it helps to shift the origin of the molecu-
lar curvature space to the point of uniform spherical cur-
vature.)

Inspection shows that the third term in (16) is neg-
ligible in comparison with the fourth unless the number
of vesicular undulation modes (or molecules) is unrealis-
tically small. When it is omitted the correction terms in
(15) and (16) differ only in sign.

Previously, we derived the effective bending rigidity of
the sphere with a standard method of statistical mechan-
ics. For each mode, we computed the slight change of its
mean-square amplitude arising from the bending energy
correction term in (15). The resulting change in mode en-
tropy translates into a change of mode free energy. Inte-
gration over all modes leads to a free energy, negative in
the old calculation, which has to be added to 8πκ, the
bending energy of the nonfluctuating sphere, to obtain
the total free energy of bending and, from it, the effective
bending rigidity. An outline of this type of calculation,
now with J as measure and employing (16), is given in
the Appendix.

As an attractive alternative we take here a shortcut
which should be equally valid as it means an exchange of
roles between spherical curvature and bending fluctuation
mode. Imagining the thermal undulations to “freeze” in
their instantaneous amplitudes, we treat the (1/2)(∇2f)2

term in (16) as a correction of the bending energy of the
sphere due to the frozen undulations. Because of

〈

∮
1

2
(∇2f)2dΩ〉 =

∆A

A

and the second form of (1) this leads, after taking thermal
averages and subtracting the regular mode energies, to the
total (free) energy of membrane bending

∆G = 8πκ

(
1 +

kT

8πκ
lnM

)
,

and thus to

κeff = κ+
kT

8π
lnM. (17)

The result suggests a convenient interpretation: The undu-
lations of the spherical vesicle produce the relative excess
area ∆A/A which has to assume the curvature J = 2/r′0 of
the sphere. The excess area could be supplied by a reser-
voir, but in our case of constant membrane area it results
from a shrinkage of the sphere radius. The prime on r0 in
our formulas is to indicate the renormalized, shrunken ra-
dius as opposed to the radius of the nonfluctuating sphere.

We have obtained in two entirely different ways equiv-
alent results, equations (11, 17), for the effective bending
rigidity as a function of the scale of bending. Both of them
may be expressed by equation (2), the numerical factor
being α = −1. Clearly, a negative value of α means that
the bending fluctuations make fluid membranes stiffer, not
softer.

It is not self-evident that the stiffening should be the
same for the large-scale bending fluctuations of a pla-
nar membrane and for spherical curvature in the pres-
ence of fluctuations. The stiffening is independent of ge-
ometry because the correction of the bending modulus
κ̄ of Gaussian curvature, predicted to exist and to be of
type (2) by other authors [9,12,13], vanishes if J is the
statistical measure. This may be seen by superimposing
a (weak) undulation on a base with pure saddle curva-
ture (J = c1 + c2 = 0,K = c1c2 < 0). An undulation of
fixed mean curvatures cannot interact with a base having
no mean curvature of its own. The displacement measure
fakes a coupling because at fixed normal displacement the
associated J varies with saddle curvature. As an illustra-
tion, we write down J for a base which is of pure and
uniform saddle curvature c1 = −c2 = 1/r0 and parallel
to the xy plane in the origin of the xy coordinate system.
(Since there are no surfaces of uniform pure saddle curva-
ture, uniformity can only only be approximated.) With u
being the normal displacement from the base, we find up
to second order in u and its derivatives

J =
1

r0 + u
−

1

r0 − u
−∆u

= −2
u

r2
0

−
∂2u

∂x2
−
∂2u

∂y2
, (18)

if only a small enough vicinity of the origin is considered.
The first term in (18), −2u/r2

0, couples u and K = −1/r2
0

in the displacement measure, but it is part of the curvature
of the undulation itself if J is the measure.
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3 Entropy loss of membrane closure

Before studying the entropy loss of membrane closure it
seems useful to digress on a related system, the finite al-
most flat membrane with periodic boundary conditions
in two directions. For a special version of the hat model,
i.e. hats with a fixed cap boundary angle ψ0 that point
either upwards or downwards, periodic boundary condi-
tions require equal numbers of positive and negative hats.
Conversely, any periodic arrangement of positive and neg-
ative hats in equal numbers satisfies periodic boundary
conditions. If the restriction is lifted and the hats can
turn around in a bilayer (free flip-flop) or move in and
out of equal reservoirs for positive and negative hats, the
number of positive hats, M+, satisfies the Gaussian dis-
tribution function

w(M+) = (πM/2)−1/2 exp

[
−

(M+ −M/2)

M/2

2
]

where M � 1 is the total number of hats in the mem-
brane as above. The same distribution applies, of course,
to the number of negative hats, M−. Since the distribu-
tion function is normalized such that its integral is unity,
the imposition of periodic boundary conditions changes
the fluctuation entropy of the membrane by

∆S = k lnw(0) = −
1

2
k lnM (19)

apart from an additive constant, −(k/2) ln(π/2) in this
particular case. If there are n thermally accessible molecu-
lar curvature states, we have to add to (19) a term −k lnn
(and change the additive constant). In some cases curva-
ture states could, perhaps, be defined in terms of a quan-
tum mechanical description. In the classical case of contin-
uous cap curvature there is still such a term, with n� 1
characterizing the number of participating “smeared” mi-
crostates. We do not try here to estimate n. (Also, we
do not discuss the relationship between molecules as mass
points on a lattice, the picture used above, and molecules
as caps of hats.) We are interested mainly in the part of
the entropy of periodic boundary conditions that depends
on M and is given by equation (19). All other parts of
this entropy, including one of mixing, should depend on
molecular properties and be independent of M .

If a Fourier expansion of mean curvature is used in-
stead of hat modes, it will in principle include a zero wave
vector mode of uniform mean curvature. Periodic bound-
ary conditions suppress this mode, while they seem not to
interfere with any others. The suppression of the uniform
curvature mode is equivalent to the previous condition of
equal numbers of positive and negative hats. Therefore,
we can return to the hat model for an evaluation of the
associated entropy loss. In this way we arrive again at
equation (19).

A little reflection reveals that we have obtained a cu-
rious result. The entropy loss of (19) comes in addition
to that of suppressing the mean-curvature fluctuations of
a single molecule, −k lnn. Evidently, the suppression of

the zero wave vector mode can have a much stronger ef-
fect than the suppression of the bending fluctuations of a
single molecule.

The entropy of membrane closure appears to be simi-
lar, at least in the case of spheres, to the entropy of peri-
odic boundary conditions. In order to show this, we first
note that the constraint of fixed membrane area rules out
fluctuations of the uniform spherical curvature in a linear
approximation. Using the two-state hat model, we then
create a sphere by producing an excess of positive hats in
a piece of membrane. The required excess number of pos-
itive hats should increase linearly with the radius of the
sphere. It will be much smaller than the total number M
of molecules if the vesicle is large enough. Accordingly, we
may expect (19) to be a good approximation for the en-
tropy of suppressing the fluctuations of uniform curvature
of such vesicles. The model can again be generalized by in-
troducing multistate or continuous cap curvatures. If the
molecular bending energies are continuous and quadratic
in J , equation (19) should be exact for weakly fluctuat-
ing spheres of all sizes, apart from an unknown additive
constant.

Since spherical closure suppresses fluctuations not only
of the l = 0 but also of the three l = 1 curvature modes,
we may expect the total entropy of vesicle closure to con-
sist of altogether four contributions of type (19). In this
way we arrive at equation (3), announced in the Introduc-
tion, which differs from (19) only by its numerical factor
(2 instead of 1/2). We cannot exactly calculate the ad-
ditional contributions as the suppression of a harmonic
curvature mode is difficult to define for flat and spherical
membranes.

Hat modes on a sphere pose a further problem. As an
illustration, we consider a membrane with only two hats.
If their caps are of equal but opposite curvature (in addi-
tion to a base curvature), the mean curvature will vanish
on the rest of a periodically planar membrane, but it will
not be generally uniform on the rest of a sphere. This is
another consequence of the absence of the l = 1 spher-
ical harmonic modes of curvature. It implies that there
are no fully decoupled hat modes on a sphere even in the
linear approximation. The problem seems irrelevant for
large spheres and can be circumvented by using spherical
harmonic modes. This makes us confident that the en-
tropy loss of spherical membrane closure is indeed given
by equation (19), apart from an additive constant depend-
ing on molecular properties. Very small vesicles may be an
exception for the reasons given above.

4 Concluding remarks

In the present work we derived the effective bending rigid-
ity in two entirely different ways, using local bending mo-
des (hats) in one case and global bending modes (spheri-
cal harmonics) in the other. The calculation based on hat
modes in almost flat membranes indicates that these lo-
cal bending modes weaken each other’s contribution to
the bending fluctuations of the membrane in the large.
The weakening is due to the tilt which one hat imposes
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on another residing in its brim. It appears to be the be-
ginning of a self-screening of hats which becomes extreme
when an aggregation of hats of one sign produces a nearly
spherical bud in the membrane. In such a case, the action
of those hats on the rest of the membrane can, in princi-
ple, vanish completely. The relatively weak self-screening
within a single spherical cap has been neglected in our
calculations.

The other calculation of κeff employs spherical har-
monic modes to obtain the effective energy of spherical
curvature in the presence of bending fluctuations. The re-
sult of it depends on whether mean curvature or displace-
ment is taken as measure of integration. We selected mean
curvature and gave several reasons for this choice. The fact
that the two different calculations of the effective bending
rigidity lead to the same fluctuation induced membrane
stiffening lends additional support to the choice of mean
curvature H or J = 2H.

To obtain a formula for the entropy loss of membrane
closure we first considered the planar membrane with pe-
riodic boundary conditions in two directions. The entropy
loss due to these boundary conditions, which amount to
the suppression of the global fluctuation mode of uniform
curvature, was calculated in terms of the hat model. Start-
ing from molecular mean curvature fluctuations seems to
be indispensable in deriving this entropy. The result was
adopted as a conjecture for the sphere and, in particular,
applied to all of its four suppressed fluctuation modes.
The entropy loss obtained should be independent of spon-
taneous curvature unless the latter is strong enough to
deform the sphere. Nonspherical equilibrium shapes and
fixed vesicle volumes raise additional problems which re-
main to be studied.

Both fluctuation effects, the stiffening of membranes
and the entropy of membrane closure, will have conse-
quences for the stability of microemulsions and the size
distribution of vesicles. Presently available experimental
data seem to be inconclusive in both respects. As a rela-
tively recent result we would like to mention an analysis
of data collected on droplet microemulsions in thermo-
dynamic equilibrium with an amphiphilic interface. As-
suming a correction of the type z′kT lnM to the bending
energy of a closed spherical membrane (with Js = 2/r′0),
Kegel et al. [18] estimated the numerical prefactor to be
in the range 0 < z′ < 3/4 which does not quite agree with
our prediction z′ = 2. The idea of a logarithmic correction
with a yet to be determined numerical factor was taken
from Fisher’s early theory of condensation and the critical
point [19].

I am grateful to R. Lipowsky, R. Netz, H. Pinnow and T. Weikl
for discussions.

Appendix

We give here in outline the derivation of the effective bend-
ing rigidity of a fluctuating spherical membrane by way of

a standard method of statistical mechanics. The starting
point is equation (16) and its discussion.

The equipartition theorem for a bending fluctuation
mode expressed by the relative displacement f = u/r′0
reads without coupling to spherical curvature (Js = 2/r′0)

1

2
κ [l(l+ 1)− 2]2 〈|alm|

2〉Js=2/r′0
=

1

2
kT (20)

and with full coupling to spherical curvature (Js = 0)

1

2
κ
{

[l(l+ 1)− 2]
2

+ 2l(l+ 1)
}
〈|alm|

2〉Js=0 =
1

2
kT.

(21)

We are interested in the ratios Rl of the mean-square cur-
vature mode amplitudes without and with coupling. Since
the curvature amplitudes equal [l(l+ 1)−2] times the dis-
placement amplitudes, we can replace them in each ratio
by the displacement amplitudes. From

Rl =
〈|alm|2〉Js=2/r′0

〈|alm|2〉Js=0

=
[l(l + 1)− 2]

2

[l(l+ 1)− 2]
2

+ 2l(l+ 1)

we obtain the change in entropy of a single mode due to
the coupling

∆Sl =
1

2
k lnRl ≈ −

1

2
k

2l(l+ 1)

[l(l+ 1)− 2]
2

≈ −k
1

l2
,

where the approximations are valid for l � 1.
Summation over all modes lm leads to the total en-

tropy change

∆S ≈ −k
lmax∑
l=2

2l + 1

l2

≈ −2k

∫ lmax

1

1

l
dl ≈ −k lnM

where use is made of M ≈ l2max. Accordingly, the interac-
tion with spherical curvature increases the free energy of
the thermal undulations by kT lnM . Inserting this in

8πκ− T∆S = 8πκeff ,

an equation defining the effective bending rigidity of the
spherical membrane, we arrive at equation (17).
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